

a **xylem** brand

in cooperation with

Special Photometric Procedures and Multi-step Measurements

- General Overview of Measurement & programming principles with photoLab[®] 7000 Series
- Programming of Chlorophyll method: step by step
- Wine quality factors: Colour intensity and nuance
- Overview of sugar determination principle with enzymatic test kits: Glucose, Sucrose, Fructose

Programms and Programming:

- Concentrations measurements:
 Programmed methods for commercial test kits
 User calibration curves e.g. for Uranine
- Multi-step measurements:

Chlorophyll methods for environmental analytics, Food (nutrition), R&D...

Enzymatic test kits

ompendium

available from various manufacturers, complex handling eased by (user-defined) programs

Multi-wavelength measurements e.g. wine colour

Extense Programming options

Programming with photoLab® 7000

Photometry Compendium

Operators, Variables, Conditions...

R = Result

ompendium

- \mathbf{K} = Variable in formula, to be defined
- $A = Absorption A_{xxxnm}$

Same absorbance at different steps => Index to be entered for second and more absorption

measurements at same wavelength: A xxxnm 2; A xxxnm 3...

F-Keys for easy operation:

Operators via F2 F		•	/	F1: Back	
()		^	Pi		
sin a	rcsin	sinh	arsinh		
cos a	rccos	cosh	arcosh	F4. Next	
tan a	rctan f	tanh	artanh		
log Ir	1	10^	e		
Variables via F3 (Axxxnm	, K1,	K2)		F4: Next	

Chlorophyll measurement is needed in many applications:

Environmental Analysis

ompendium

- Algae content in food & beverage industry
- Required procedures vary according to application field!

Special / Multi waveleng				10	/16/14	14:10
Vol sample 5 Abs before A(665 nm)=0.300 Abs after A(665 nm)=0.200 Chl a 26.64 µg/l						
26.64 µg/I Start new analysis with <start enter=""></start>						
2005: chloro training Chl a 10 mm 0.00 - 1000.00 μg/l				Chl a)0 µg/l		
Setup	Repeat				Car	ncel

Easy programming according to application requirements

- Sample preparation according to standard methods:
 Chl is extracted, and a small volume of the extract is measured photometrically
- The determination of the Chlorophyll is done by measuring the difference of the absorbance before and after adding HCI.
- The final formula of Chlorophyll take sample and extraction volume into the automatic calculation.

Programming Chlorophyll Measurement

in cooperation with G.I.T. Laboratory Journal

© 2015 WTW GmbH [June 2015]

Programming Chlorophyll Measurement

NI LA MAIN

Programming Chlorophyll Measurement

Condition	10/16/14 14:02		
		-7	can be d
Here you can enter a formula for a	condition The		resulting
measured value is only valid if this	condition is met.	⇒	To corre
			back to
Back Operators Variable	25		
		Edit me	thod
	F4	Seque	nce
		Measu Measu	irement 1 irement 2

- Using F3 will show an R for Result which can be defined: e.g. for R<0 wrong the resulting display ---- mg/l
- To correct condition, use back space until back to left screen

	Edit method	10/16/14 14:06
F	Sequence	Designation
	Measurement 1	Abs before
	Measurement 2	Abs after
1		
	Back	Next

Colour Measurement in Beverage / Wine Industry ...

- ... is important for:
- Wine growers

ompendium

Third party bottlers' income quality control.

Photometric colour measurement offers:

- Accuracy and comparability (versus human eye, comparator ...)
- Reproducibility

Bottlers need several routine testings besides coulor:

- Testing Water parameters, sugar content, …
- Turbidity (in many other beverages)
- COD before disposing water to municipal wastewater plant

Wine Colour = Multi-λ measurement

Wine characterization by colour

Colour Intensity = Sum

ompendium

Absorbance measurement @ λ 420nm, 520nm and 620nm

 Abs_{420} for yellow/orange/ocker Abs_{520} for red Abs_{620} for blue (not always included)

 $R = Abs_{420} + Abs_{520} + Abs_{620}$ $R = Abs_{420} + Abs_{520}$

Colour nuance Ratio of brown/red nuances

 $\mathsf{R} = \mathsf{Abs}_{420} / \mathsf{Abs}_{520}$

< 0,8 violet, 0,8-1,2 red, > 1,2 orange Image source:perrotwein@bluewin.ch

Determinations of Sugar (Glu...) with enzymtic test kits, e.g. with

Understanding Enzymtic Test Kits

Sugar (D-Glu, D-Fru, Sucrose etc.) are important parameters in Wine, Food & Beverage

- Test kits are based on enzymatic reactions for many substances
- Enzymes are specific to chemical reactions and substances (substrates)
- Some tests offer multi-step measurements for determinations of individual sugar molecule concentration such as Sucrose, Glu and Fru
- Enzymatic test kits are gradually replacing other standard methods
- Are accepted by many International Organisations in Food & Beverage
- Enzymes "co-operate" with metabolistic "energy provider" (ATP) and Co-enzymes offering a Redox system, here NAD+/NADH and NADP+/NADPH

The Hub: NAD+/NADH co-enzyme

NAD⁺/NADH and NADP⁺/NADPH is a standard step in enzymatic reactions.

In reduced form, these redox systems show a peak at 340 nm.

a loma r

Compendium

Scheme of Suc, Glu, Fru determination

Enzymatic Test Kits ...

.... provide:

ompendium

- all necessary information on substances to enter formula
- ➢ all enzymes needed
- ➢ all co-enzymes such as NADP⁺, ATP etc.
- > AQA material

The transfer of reaction into a simplified photometric routine may need several steps and formulae.

